
JQWRNAL OF COMPUTATIONAL PHYSICS 31, 1-20 (1979)

Review

Direct Methods for the Solution of the Discrete Poisson Equation:
Some Comparisons

CLIVB TEYPERTOK

Grropean Cenfre for Medium Range Weather Forecusts,
.Thinfirld Park, Reading, Berkshire, Unired Kingdom

Received March 31, 1978; revised September 6, 1978

Some comparisons are presented between various algorithms for solving the discrete
Poisson equation over a rectangle with Dirichlet boundary conditions on two opposite
sides and either periodic or Dirichlet boundary conditions on the other two sides. The
methods considered include those based on FFT in one-dimension, block-cyclic reduction,
and variants of the FACR(I) algorithm in which FFT is combined with a preliminary
cyclic reduction step. Comparisons are made in terms of detailed operation counts, execu-
tion time, and accuracy with respect to round-off error, for a wide range of grid sizes. The
importance of careful programming is stressed, and some suggestions are offered for
etficient implementation of the algorithms.

1. hTROIXJCTION

During the past ten years, it has become increasingly popular to solve the discretized
Poisson equation (and related problems) by direct rather than iterative methods.
Such methods were at first applied only to the simple Poisson equation on a recta.n-
gular N x M grid, where N was restricted to the form N 7: 2” (or N = 3 x 2” in
Hackney’s [12] important early paper). More recently, direct methods have been
extended to other regular regions [20, 231, to arbitrary N [18, 25, 261, to irregular
regions [4, 5, 281, and to general separable elliptic equations 1211.

Many of the algorithms developed for the simple Poisson equation fall into two
apparently distinct categories: those based on Fourier decomposition in one
dimension, using fast Fourier transform (FFT) techniques, and those based on block-
cyclic reduction (Duneman’s algorithm). Both approaches are documented in some
detail in the paper by Buzbee et al. [3]. It is natural to ask which of the two approaches
leads to the fastest algorithms; from the available literature, the answer is not clear.
For example, Sweet [24] found that for a particular problem, Buneman’s algorithm
was at least twice as fast as a method based on FFT, while Fischer et al. [IO] found
FFT methods to be the faster. The reasons for this confusion lie in the variety of
methods available for carrying out component parts of the algorithms (principally
fast Fourier transforms and the solution of tridiagonal systems), and in the assump-
tions made by different authors (e.g., whether or not any coefficients required in

I
0021-9991/791040001-20$02.00!0

Copyright 0 1979 by Academic Press, Inc.
All rights of reproduction in any form rercrved.

2 CLIVE TEhlPERTOrj

solving tridiagonal systems have been precalculated). Hackney [14] has also noted the
influence of program design, compilers, and computer architecture on the relative
performance of different algorithms. When comparing operation counts rather than
execution times, there. are further pitfalls; Hackney [12] pointed out the importance
of counting additions as well as multiplications, and the danger of including only the
highest-order terms. Unfortunately, not all subsequent authors have followed this
advice.

In addition to the algorithms based on either Fourier analysis or cyclic reduction,
we shall consider variants of the FACR(1) algorithm [12, 131 in which Fourier
analysis is combined with one preliminary step of cyclic reduction. In most cases this
is a faster method than either Fourier analysis or cyclic reduction on its own. The
more general FACR(Z) algorithm [13,22] will be studied in a later paper 1301 in
which the relationship between the FFT-based and block-cyclic reduction algorithms
will also be explicitly demonstrated. Other direct methods such as total reduction [16]
and “marching” or “shooting” [l, 71 will not be considered here, though they may be
competitive [171.

This paper has as its main aims the following: to establish reasonably accurate
operation counts for a number of variants of the direct methods applied to a simple
problem; to outline some alternative variants; to offer hints on how certain methods
may be implemented most efficiently; to compare execution times; and also to
compare the relative accuracy of different methods.

We consider the discretized Poisson equation on a rectangular N x Al grid
(i,,j): 0 < i < N, 0 < j < M, and for simplicity we assume a unit grid length in
each direction, so that the equation has the simple form:

where the boundary conditions at i = 0, N are either Dirichlet,

or periodic,

and the boundary conditions at j = 0, M are Dirichlet,

xi,0 = Xi,&f = 0, O<i<N,

We also assume that N is a power of 2, and that FFT’s and block-cyclic reduction will
normally be performed in the i-direction. Finally, we assume that the same problem
has to be solved a number of times with different right-hand sides, and that sufficient
core storage is available to precalculate and store any required coefficients; in some
cases we will also wish to store both the right-hand side and the solution array
separately. The consequences of altering some of these assumptions will also receive
mention.

POISSON-SOLVERS: SOME COMPARISONS

2. PRELIMINARIES

Very careful operation counts for some of the algorithms which follow show that
the number of additions or multiplications required is typically of the form

(M - l){K,N log, N + K,N + KS log, N + Kq:,

where, however, the third and fourth terms of the sum are small compared to the first
two, and tend to depend on programming details. We are therefore justified in
neglecting them and simply establishing KI log, N + K2 , the number of additions or
multiplications per point.

As mentioned previously, the direct methods outlined here depend heavily on
fast Fourier transforms and the solution of tridiagonal systems; we first estabikb
operation counts for these procedures.

The experiments reported in Section 7 used a general-purpose Assembler Language
FFT package with the following important characteristics:

(a) the number of data points (N) can be any number for a complex transform,
and any even number for a real transform;

jb) all trigonometric function values are precalculated and picked ant as
required during the transform;

(c) the results emerge in the correct order, in contrast to most FFT programs
which require somewhat tortuous logic to unscramble the transfcrm (Sweet {Zit]
found that this feature of most FFT programs significantly increased the execution,
time of an FFT-based Poisson-solver);

(d) factors of 2 are (as far as possible) grouped together into factors of 4.

The mixed-radix complex FFT was modeled on the algorithm given by Singleton
[19] with appropriate modifications to eliminate reordering 1293 and to pick out
trigonometric function values rather than calculating them every time they are
required. The additional manipulations required to use the FFT for real transforms
are due to Cooley, Lewis, and Welch [S]; see also [22] and [30].

For general even N, factorized in the form

where p > I and ~2~ represents a general odd factor, the operation count for a r-ear
periodic transform is

IV 1 p + 2q + 1.5r - 3.2s + 0.5 T (I??~ + 2) ?i - 11 multiphcations,

while a real sine transform requires an extra 2.5N additions and 0.5N multiphcations.

4 CLIVE TEMPERTON

In the present analysis, we are restricting N to be a power of 2, and for simplicity
we assume that the FFT is used in pure radix-2 mode, i.e., r = 0 in Eq. (2), so that
our operation counts become the following:

for a periodic transform,

1.5 log, N additions and (log, N - 1) multiplications per point;

for a sine transform,

(1.5 log, N + 2.5) additions and (log, N - 0.5) multiplications per point.

Although these operation counts are typical of generally available real FFT routines,
they can be improved upon even within the radix-2 formulation. Instead of proceeding
via an artificial complex series of length N/2, it is possible to modify the complex FFT
algorithm directly for the real periodic case. Thus the transform algorithm of
Hackney [13] requires only 2.5 log, N - 3.5 operations per point, while Bergland [2]
quotes an operation count of 1.5 log, N - 2.5 additions and log, N - 3.5 multi-
plications per point for his algorithm.

We turn our attention now to the solution of tridiagonal systems. In the present
problem, these are almost all of the simple form

x~-~ + hxj + x?+~ = bj > 1 <j<M---l (3)

with +, = x, = 0, and 1 h / 3 2. We use the following algorithm based on Gaussian
elimination and given (for general diagonally dominant tridiagonal systems) by
Varga]31, p. 1951:

0 1 = x-1; Wj = (A - Wj-J-l, 2\<j<M-I;

g, = a+, ; gj = Uj(bj - gj-A 2<j<M-1;

x,vr-1 - &TM-l ; Xj = gj - WjXj+l 3 M-2>j>,l.

Provided that the coefficients wj have been precalculated and stored, this algorithm
requires only two additions and two multiplications per unknown. Other possibilities
requiring less coefficient storage but more arithmetic include cyclic reduction [12, 131.
methods based on the Toeplitz structure of the tridiagonal matrix [IO], and on the
factorization of the matrix into two rectangular matrices [Kj.

An interesting way of halving the number of coefficients while requiring no addi-
tional arithmetic arises from the “symmetric Gaussian elimination” or “folding”
algorithm recently proposed by Evans and Hatzopoulos [9]; for tridiagonal systems
of the form (3), this algorithm takes the simple form (for M = 2m):

w1 = x-1; wj = (A - Wj&l, 2 <j < m - 1;
g, = w,b, ; gj = uj(bj - gi-11, 2 <j<n-I;

giM--l = w&r-, ; gj = m,-j(bj - gj+A M-2 >j>m+ 1;
x, = @ - 2w-Hbm - gm-1 - g,,,,);
.xj = gj - wjxj,,) m-l>,j>l;
X; = gj - CO&f-jXj-1 9 mfl <j<Anl-1.

A slight modification is required if M is odd.

POISSON-SOLVERS: SOME COMPARISONS c I

In certain circumstances, it is possible to save coefficient storage using the obser-
vation that if the system (3) is sufficiently diagonally dominant, then wi converges
rather rapidly to a constant value. For example, with X = -4, the sequence converges
to within machine precision on a CDC 6600 (48-bit mantissa) at j = 13. Unforte-
nately, for the simple Poisson equation not all the tridiagonal systems encountered
are sufficiently diagonally dominant; but for certain Helmholtz equations, storage
may be saved in this way.

3. THE BASIC FFT METHOD

For clarity we derive briefly the basic FFT method for Poisson’s equation witll
Dirichlet boundary conditions at i = 0, N. On each row, we express the solution
values (including the prescribed boundary values) as sums of Fourier sine coefbciems:

N-l

Substituting in Eq. (l), we obtain (after some manipulation) (S - 1) tridiagonal
systems each of the form:

where A, = 2 cos(kr/N) - 4 and

N-l

b^,Sj = (2/N) 1 bi,j sin(ikn/N).
i=l

The solution procedure thus has three stages. In the first stage, a sine transform is
applied on each row of the right-hand side field to implement Eq. (6) and obtain
the coefficients &j ‘ Equation (5) is then solved for each value of k. In the third stage,
an inverse sine transform is applied on each row to implem.ent Eq. (4) and obtain the
solution. In all we have to perform 2(M - 1) sine transforms of length N+ and solve
(N - 1) tridiagonal systems of order (M - 1).

For periodic boundary conditions at i = 0, N we replace the sine transform by the
full periodic transform:

N!P--1

and obtain (N/2 + I) systems of the form

Xk,j-1 + X$ksj + ?cksj+l = Ffi,j , 0 d k < N/2,

where
A, = 2 cos(2krIN) - 4

6

and

CLIVE TEMPERTON

N-l

6,,, = (2/N) 1 biSj cos(2ikr/N)
i=O

together with (N/2 - 1) systems of the form

where X, is again given by Eq. (S), and

N-l
l& = (2/N) 1 bi,$ sin(2ikr/N).

i=O

In this case we have to perform 2(M - 1) periodic transforms of length N, and solve
N tridiagonal systems of order (M - 1).

The number of coefficients used in solving tridiagonal systems is (N - l)(M - 1)
or (N/2 + l)(M - 1) depending on whether the boundary conditions at i = 0, N
are Dirichlet or periodic. The solution can overwrite the right-hand side field; the
only work space required is an area of N locations used by the FFT routine outlined
in Section 2.

4. BLOCK-CYCLIC REDUCTION

Details of the block-cyclic reduction method (Buneman’s algorithm) are given by
Buzbee et al. [3] and need not be repeated here. There are two variants: Variant 1
requires two separate arrays, while in Variant 2 the solution can overwrite the original
right-hand side field, using no additional work space.

To establish the operation count for Variant 1 with Dirichlet boundary conditions
at i = 0, N, we first consider the number of tridiagonal systems which have to be
solved. There are (log? N - 1) steps in the reduction phase; in the rth step we solve
(N/2’ - 1) systems of the form A(‘-l)x = b, where A(‘-l) is the product of 2T-1
tridiagonal matrices. (See [3] for details). Solving for xN/a requires N/2 tridiagonal
solutions. There are then (log, N - 1) steps of the back-solution phase; in the rth
step we solve 2’ systems of the form A cs-l)x = b, where s = log, N - Y and AcS-l) is
the product of 2s-1 tridiagonal matrices. Altogether there are N(log, N - 1) + 1
tridiagonal systems to be solved, each of order (M - 1).

Second, we consider the extra additions required to calculate the vectors pr’ and qr’
at each reduction step and xi during the back-solution steps, using the notation of [3]
but replacing j by i to indicate that we are performing the block-cyclic reduction in
the i-direction. A careful count shows that approximately 7N(M - 1) extra additions
are required.

Turning now to Variant 2, the number of tridiagonal systems to be solved is exactly
the same. The vectors pj’) are eliminated; the equation given in [3] for qy) appears

POISSON-SOLVERS: SOME COMPARISONS
r"
I

to require 12(M - 1) extra additions, but this can be reduced to S(M - 1) by first
defining

,y-1, _ q:~w;’ - qlw;"' + q:F--lI - q:b;,"i $. $'_;;I

and then computing

,;fj .= air-1) + (A(r-l))-l[qj~+;,I + q;;i;) _ 4;“~1) _ q~-lq,

where h = 2T-Z, and in the first step this reduces simply to

q.!’ = b,+l -t bipl - 2A-lb; .

Using this more economical form of Variant 2, the arithmetic involved in addition
to the solution of tridiagonal systems amounts to approximately 9X(M - lj additions
and O.jN(M - 1) multiplications.

For periodic boundary conditions at i = 0, N the reduction and back-solution
phases each have log, N steps; again, the details are given in [3]. In this case there are
N(log, N + 1) tridiagonal systems to be solved, each of order (M - lj; while the
extra work is approximately the same as in the Dirichlet case, for either variant. Am
alternative (and apparently fasterj procedure for the periodic case has recently been
developed by Sweet [26].

The number of coefficients used in solving tridiagonai systems is (N - l)(M - I)
or (N + I)(M - I), depending on whether the boundary conditions at i = 0, r’J are
Dirichlet or periodic. When using Variant 1, the vectors pi’) and qiTi, P 3 1: can
share an array of dimension (M - 1)N which becomes the solution array, so that the
original right-hand side field is not destroyed. Plltematively, if the vectors qj” over-
write the right-hand side, then the auxiliary array containmg the vectors ~1” need
only be half the size of the main array, so that Variant I in fact only requires 50 96
more array space than Variant 2.

5. FACR(I) METHODS

5.1. Hoehey’s FACR(1, j) algorithnz

Hackney [12] pointed out that half the transforms in the basic FFT method could
be eliminated by first performing one step of cyclic reduction in the &direction, i.el
by eliminating all x.~,~ with j odd. The resulting equation is

.x~,~-~ - .x-~,~ I SX,-~.~ - 16~~,~ + 8~~+~,~ - s:,,,; + s<,~+~

= b,!:,’ x b.i.j-1 - bi-l,i + 4bi.j - bi+.,,l; + b,,f+l . (9)

Again we can write -Y~,~ as in Eq. (4) (this time for even j only) and we obtain (for
Dirichlet boundary conditions at i = 0, N) tridiagonal systems of the form

CLIVE TEMF’ERTON

where

and

A, = 2 - 4(cos(h/N) - 2y (10)

bk!; = (2/N) y bti sin(ikrr/N).
i=l

(11)

‘Thus we first obtain bjfj for even j using Eq. (9); then perform the sine transform for
even j using Eq. (11). Following the solution of (N - 1) tridiagonal systems of order
(M/2 - l), we perform inverse sine transforms (4) for even j, and finally the solution
.?c~,~ for odd j is obtained by solving tridiagonal systems along rows.

For periodic boundary conditions at i =, 0, N a completely analogous algorithm
can be derived; the only difficulty is that a cyclic tridiagonal system of order N has
to be solved for each odd-numbered line. A number of techniques are available, some
.of which were discussed by Temperton [27]; Algorithm 4 of that paper requires the
least computation, namely, 3N additions and 2.5N multiplications, but as N is here
assumed to be a power of 2, cyclic reduction is almost as efficient (4N additions and
2N multiplications), and requires little or no coefficient storage.

For Hackney’s method, the number of coefficients required for the tridiagonal
solutions is (M/2 - l)(N - 1) or (M/2 - l)(N/Z + l), depending on whether the
boundary conditions at i = 0, N are Dirichlet or periodic. As in the case of the basic
FFT method, the solution can overwrite the right-hand side.

5.2. FACR(1, i)

In comparison with the basic FFT method, Hackney’s algorithm halves the number
of Fourier transforms required by forming a set of equations involving x,,~ for even j
only. An alternative strategy is to halve the length of the Fourier transforms by forming
an analogous set involving x~,~ for even i only. The resulting equations are of the form

On each line we now have (N/2 + 1) values of x~,~ (including the boundary points),
.and these can be expressed as sums of (N/2 - 1) sine coefficients:

N/“-l

Substituting in Eq. (12) we obtain N/2 - 1 pentadiagonal systems, each of which
can be factorized into the form

POISSON-SOLVERS: SOME COMPARISONS

.where X, = 2 cos(krr,/N) - 4, and

NIB-1

St,\ = (4/N) C bL$j sin(2ik;TiN). (!5j
.i=l

‘The algorithm thus proceeds as follows: the right-hand side of Eq. (12) is calculated
at all grid points with i even. Equation (15) is then implemented; this involves (M - 1)
sine transforms each of length N/2. Next the (N/2 - 1) pentadiagonal systems,
Eq. (141, are solved. (M - 1) inverse sine transforms each of length N/2 are then
performed to obtain xpl,j and finally + for i odd is obtained by solving simple
tridiagonal systems in the j-direction.

For periodic boundary conditions at i = 0, N a similar algorithm can be derived.
The number of coefficients required for the tridiagonal systems is the same as for

the basic F??T method. Again, the solution can overwrite the right-hand side, and the
only work space reqllired is for FFT’s.

5.3. FACR(1, i 3 j j: Diagonal Cyclic Reduction

Yet another way of combining the FFT method with one step of cyclic reduction.
is included here, not because it leads to a more efficient algorithm but because it has
some interesting aspects, and because it has applications in the direct solution of
Foisson’s equation over irregular regions [28]. In Sections 5.1 and 5.2 we halved the
number of unknowns by eliminating -x~,~ either for i odd or for j odd. A third aiter-
alternatit-e is to eliminate x~,~ for (i + j) odd, resulting in the following equation:

with appropriate modifications near the boundaries. The retained points lie on alter-
nate diagonals. For even j, we introduce the same sine summation as for FACR(IZ i):

while for odd j, we introduce the following modified summation:

Note that this series has an extra term (k = N/2). Introducing (17) and (IS) into
Eq. (16) and performing the usual manipulations, we obtain (N/2 - 1) pentadiagonal
systems of order (M ~- l), which factorize into the form:

10 CLNE TEMPERTON

where

A;, = 2 cos(kr/2N) - 4, 2; = 2 cos(kn-j2N) + 4,
(20)

Sk?, = (4/N) NE1 bklj sin(2ikr/N)
i=l

for j even, and

Sk{ = (4/N) c b& sin((2i - l)kz-/N)
(-1

(21)

for j odd.
In addition, for k = N/2 we obtain a tridiagonal system of order M/2 of a rather

special form:

-15&, + & = lit’,)

52 k.j-2 - 14&j + i&j+2 -= sg) j = 3, 5 ,..., M - 3, (W

where
ND

I;;.?: = -(4/N) c (-# b& .
i=l

(23)

The algorithm is thus implemented as follows: first, b$ is determined, using
Eq. (16), at all points with (i + j) even. The Fourier sine coefficients &3 are then
computed using a simple sine transform, Eq. (20), on even lines and a shifted sine
transform, Eqs. (21) and (23), on odd lines. The pentadiagonal systems (19) and the
tridiagonal system (22) are solved for the sine coefficients 4,,, . The solution at points
with (i +,j) even is then obtained using a simple inverse sine transform (17) on even
lines and the shifted inverse sine transform (IX) on odd lines.

Finally the solution at points with (i + j) odd is determined from the scalar
equation

Xi,? = &+,,j + xi-1.j + xi,j+l + xi+1 - b,,d

since all the quantities on the right-hand side are by now known.
The manipulations required to convert a real shifted sine transform into a real

periodic transform are given by Swarztrauber [22].
The algorithm can be modified to eliminate x~,~ for (i + j) even; the roles of odd

and even lines are then interchanged. An analogous algorithm can also be derived for
periodic boundary conditions at i = 0, N.

The process of diagonal cyclic reduction is similar to the first step of the “total
reduction” method of SchrGder and Trottenberg [161.

POISSON-SOLVERS: SOME COMPARISONS I1

6. SmfMARy 0F OPERATION Coma

Using the results of Section 2, operation counts have been determined for ail the
algorithms outlined in Sections 3-5. These are summarized in Table I.

TABLE I

Summary of Operation Counts (per Point)

Boundary conditions
at i = 0, N: Dirichlet Periodic

Buneman (Variant 1)
Buneman (Variant 2)
Basic FFT
Hackney’s FACR(1, j)
FACR(1, i)
F.&X(1, i + j)

adds mults adds muits
2 log,N + 5 2 log,N - 2 2 iogJv + 9 2 iog,N + 2
2 log,N + 7 2 log,N - 1.5 2 log,N + 11 2 iogpv c 2.5
3 log*N + 7 2 log, N f I 3 lGg& + 2 2 log,N + 1
1.5 lGg,N f 7.5 lo&N + 2 1.5 lG&.w + 6 lGg,N f 1.5
1.5 log,N f 7 log,N + 2 1.5 log,N + 4.5 log,N + 0.5
1.5 log,N + 7.25 10.&N + 1.75 1.5 lo@J + 4.75 log&r + 1.5

For Dirichlet boundary conditions at i = 0, N Bunsman’s algorithm has a !ower
operation couut than the basic FFT method, while for periodic boundary conditions
at i = 0, N the reverse is true, except for very large values of iV. (Note here the mis-
leading effect of comparing the “asymptotic” operation counts of 4MN Iog, N for
Buaeman’s algorithm versus 5MN log, N for the basic FFT method, regard!ess o_’
boundary conditions.)

Combining the FFT method with one step of cyclic reduction to halve either the
length or the number of the transforms, we obtain algorithms which require fewer
operations than either Buneman’s algorithm or the basic FFT method, except for
Dirichlet boundary conditions on very small grids (N < 16) in which case tile
Buneman and FACR(1) algorithms have similar operation counts,

Replacing the radix-2 FFT by a radix-4 version yields a saving of approximateiy
0.25 log, ic’ additions and 0.5 log, N multiplications per point for the basic FFT
algorithm, under DirichIet or periodic boundary conditions. For the FACRJ1)
algorithms, the saving is halved.

If a real FFT of the type developed by Bergland [2] is used instead of the half-
length complex transform coupled with a preprocessing or postprocessing step [6],
then a saving of five additions and four multiplications per point is realized for the
basic FFT algorithm, or half this saving for the FACR(1) algorithms.

It is worth reiterating at this point that we have been solving all the tridiagonal
systems by Gaussian elimination, using precalculated coefficients. If this is ru%ed out
by lack of space, cyclic reduction may be used instead. To so!ve a tridiagonal system
of order M by cyclic reduction requires approximately 4&I additions and 2M multi-
plications, an increase over Gaussian elimination of 2M additions. Now the number

12 CLIVE TEMPERTON

of tridiagonal systems to be solved in Buneman’s algorithm is approximately
N(log, N - 1) for Dirichlet boundary conditions at i = 0, N, or N(log, N + 1)
for periodic boundary conditions at i = 0, N; while in the FFT-based algorithms the
number is approximately N, or at most 3N/2. The consequences of changing from
Gaussian elimination to cyclic reduction for simple tridiagonal systems are thus as
follows: for either Variant of Buneman’s algorithm, an extra (2 log, N - 1) (Dirichlet)
or (2 log, N + 2) (periodic) additions per point; for basic FFT or FACR(1, i + j),
two extra additions per point; for Hackney’s FACR(l,j) algorithm, an extra two
(Dirichlet) or one (periodic) additions per point; for FACR(l, i), three extra addi-
tions per point. In this situation, the use of FFT-based methods appears even more
advantageous.

7. NUMERICAL RESULTS

In the preceding sections, we have considered a number of algorithms in terms of
operation counts; here we turn to their actual implementation on a computer. Now
although it is clear that direct methods for the solution of Poisson’s equation are
much more efficient than simple iterative methods such as successive overrelaxation,
they are considerably harder to program, and for their superiority to be fully realized
it is important that they be efficiently coded. The author’s personal preference is for
the use of a low-level language, and the timings reported here relate to programs
written in IBM Assembler Language. This preference was reinforced by the following
experiment.

TABLE II

Execution Times (in msec on IBM 360/195) for 32 x 32 Dirichlet
Problem by Buneman’s Algorithm (Variant 1 j

Language Compiler 2-d indexing l-d indexing

Fortran G 58.5 39.6
Fortran H 14.9 10.5
Fortran X 14.2 9.4
Assembler - - 5.3

Two Fortran subroutines were written to implement Buneman’s algorithm
(Variant 1) for Poisson’s equation on a rectangle with Dirichlet boundary conditions.
One treated all the arrays as two-dimensional (i.e., doubly-subscripted), while the
second treated them as one-dimensional (singly-subscripted). The two subroutines
were then each compiled at levels G, H, and X. The Fortran style was intended to be
as helpful as possible to the compiler, and as efficient as possible at run time (e.g., no
branches to subroutines, or from one section of the program to another, apart from
simple loops). The six resulting programs, together with a corresponding AssembIer

POISSON-SOLVERS: SOME COMPARISONS 13.

Language subroutine, were then timed on the Dirichlet problem with N = M = 32.
The results are given in Table II. The conclusions are clear; even the best Fortran
subroutine took 75 ‘A longer than the Assembler version. If a high-level language
must be employed, the indexing should be one dimensional, and an optimizing
compiler should be used.

Hackney [14] has also compared severalPoisson-solver routines on an IBM 36O/iS5,
both in Assembler Language and in Fortran (using various compilers), and obtained
rather similar results.

Although we are assuming no storage limitations in this study, it is noteworthy
that the length of the Assembler program was only 236 words, compared with
700-1000 words for the Fortran programs.

Assembler Language versions of four algorithms described in Sections 3-5 (the
basic FFT algorithm, Buneman’s algorithm Variant i, Hackney’s FACR(I ,j)
algorithm and the FACR(1, i) algorithm) were timed on N x N problems, with N
ranging from 8 to 128, and with both Dirichlet and periodic boundary conditronr
at i = 0, N. The FFT package (Section 2) was used in its “radix 4 + 2” mode, thus
improving slightly on the operation counts given in Table I. Also, the cychc tri-
diagonal systems arising in Hackney’s algorithm with periodic boundary conditions
at i = 0, N were solved using Algorithm 4 of 1271. The results are shown in Table 411
(Dirichlet boundary conditions at i = 0, N) and Table IV (periodic boundary
conditions at i = 0, N).

TABLE III

Execution Times (set) for Dirichlet Boundary Conditions at i = 0, N (IBM 360/195)

TABLE IV

Execution Times (set) for Periodic Boundary Conditions at i = 0, N (IBM 36O/lYS)

Method N=8 N== 16 N= 32 N = 64 N = 12s
____~-

ZQneman 3.89 x lO-4 2.28 x 1O-3 1.10 x 10-z 5.24 x lo-* 4.44 x 10-f
Basic FFT 4.79 x 10-d 2.10 x 10-S 7.68 x 1O-2 3.35 x 10-S 1.55 x 1W
FACR(l,j) 3.26 x 1O-4 1.40 x 10-Z 5.31 x 10-s 2.23 x 10-3 1.01 x 10-L
FACR(1, i) 5.07 x 10-d 1.70 x 10-s 7.21 x 1CF 2.71 x IO-2 1.36 x lo-’

14 CLIVE TEMPERTON

Several points are worthy of note. For Dirichlet boundary conditions, the fastest
algorithm was Buneman’s for N < 32, and Hackney’s for N 3 64. For periodic
boundary conditions, the fastest was Hackney’s throughout the range. The results
are in line with the comparisons given in Section 6, though for Dirichlet boundary
.conditions the value of N at which Hackney’s algorithm becomes faster than
Buneman’s is somewhat larger than predicted, presumably because of the overheads
incurred in repeatedly calling a general-purpose FFT subroutine. FACR(l, i) is
disappointing in comparison with Hackney’s algorithm, especially for small values
of N; again the reason lies in the extra overheads for the FFT. In terms of total
execution time it is clearly faster to do M/2 transforms of length N rather than M
transforms of length N/2, though the latter has a slightly lower floating-point operation
count. This suggests that all the FFT-based algorithms could be made more efficient
by performing the transforms in parallel rather than one at a time.

Note that, in agreement with the timings reported by Hackney [13], the execution
time for the FFT-based algorithms is roughly proportional to N2, the total number of
points. For N = 128 with periodic boundary conditions at i = 0, N the time for
Buneman’s algorithm is anomalously large; the solution of each tridiagonal system
requires values spaced at intervals of 128 words, which causes memory bank confhcts
,on the 360/195. These could be eliminated either by adding a dummy value to each
line, or by performing the block-cyclic reduction in the more conventional j-
direction.

We consider now the question of the accuracy of the various algorithms. For each
value of N and each set of boundary conditions, a random number generator was used
to set up ten N x N “true” solutions with values in the interval [-1, +l], from
which corresponding right-hand sides were computed, using temporary double
precision to eliminate round-off error from this stage of the procedure. (As shown
in the Appendix, this is by no means a trivial refinement). Each algorithm was then
used to recover the solution from the right-hand side, and the computed solution
was compared with the original field to determine the maximum absolute point error.
The maximum errors, meaned over ten solutions in each case, are shown in Tables V
and VI.

Although the errors quoted in Tables V and VI fairly represent the error behavior
of the Poisson-solver programs described here, they should not be taken as the best

TABLE V

Mean Maximum Errors for Dirichlet Boundary Conditions at i = 0, N

Method N=8 N= 16 N = 32 N = 64 N- 128

Buneman 4.48 x 10-G 1.04 X 10-S 2.16 x 1O-5 5.50 x 10-5 1.04 x IO-4

Basic FFT 5.05 x IO-6 8.63 x lo-& 2.91 x 10-S 1.38 x lo-.& 4.59 x 10-J

FACR(l,j) 4.78 x 10-G 1.57 x 10-S 4.79 x IO-5 3.02 x 1O-a 9.57 x 10-S

FACR(1, i) 7.06 x 1O-6 8.48 x 1O-6 2.07 x 1O-6 8.15 x IO-’ 3.00 x 10-4

POISSON-SOLVERS: SOME COMPARISONS 15

TABLE VI
Mean Maximum Errors for Periodic Boundary Conditions at i = 0, N

~-

Method i\r = 8 N= 16 N = 32 N = 64 N= 128

Bunernan 7.63 x lo-” 1.75 x 10-s 3.60 x lo-” 8.41 x 10-s 1.85 x 10-a
Basic FFT 4,43 x 10-S 8.58 x IO-6 1.55 x 10-j 3.55 x Io-5 7.34 x lo-”
FACR(1, j) 5.13 x 10-6 9.47 x IO-6 2.01 x LO-5 3.11 x IO-5 8.72 x 10-S
FACR(1, ij 7,25 x lO-6 1.16 x 1O-6 2.27 x 10-i 5.14 X iOe5 1.12 x 10-a

that can be achieved. As shown in [30], a revised implementtition of the sine transform
reduces the error of the FFT-based algorithms (in the case of Dirich!et boundary
conditions at i = 0, IV), while the error behavior of Buneman’s algorithm can be
improved by solving systems of the form

(A tridiagonal) using the roots h, in a different order. By these means the round-off
errors in the case N = 128 are typically reduced by an order of magnitude.

8. EXTENSIONS

In Section 6, we noted the consequences of limiting the available core storage so
that tridiagonal systems could no longer be solved by Gaussian elimination using
precomputed coefficients; it was shown that under these circumstances the advantages
of FFT-based methods over block-cyclic reduction became more pronounced. WC
now consider the effects of relaxing some of the constraints on the problem itself
which were laid down in Section 1.

If the grid lengths in the i and j directions are unequal, the algorithms require
only slight modification; the number of extra multiplications per point ranges from
zero to two, depending on the algorithm used. It is generally more efficient to scale
the problem to give unit grid length in the j-direction, so that the tridiagonal systems
to be solved in that direction retain the form of Eq. (3j, with l’s on the subdiagonals
and superdiagonals of the corresponding tridiagonal matrices.

The operation counts for Neumann boundary conditions at i = 0, Nor at j = 0, M
are the same as for Dirichlet boundary conditions. Periodic boundary conditions at
j = 0, M require the solution of cyclic tridiagonal systems, and again it is the FFT-
based algorithms, with fewer such systems to solve, which require less extra compu-
tation.

The most general form of elliptic equation which can readily be handled by the
techniques developed in this paper is

y2i$ + pj8,$ - Kj$ = bi.9 : (24)

16 CLIVE TEMPERTON

where P and 6, are the finite-difference analogs of V2 and alay, and /3 and K are
functions of j only. Hackney’s algorithm and FACR(l, i + j) become less straight-
forward, but for the remaining algorithms the only changes are to the tridiagonal
systems in thej-direction. These now have the more general form

,ujxj-l + Xjxj + v~x~+~ = bj , 1 <j<M-1

with x0 = xM = 0. It is possible (though not very easy) to solve such a system by
cyclic reduction [ll]; more suitable is Gaussian elimination using precomputed
coefficients. This requires two additions, three multiplications, and two precomputed
coefficients per unknown. With the increased operation count for the solution of each
tridiagonal system, it is again the FFT-based methods, involving only about N such
systems, which score over the block-cyclic reduction method. For the basic FFT
method, the change from the simple Poisson equation (1) to the more general equation
(24) increases the operation count by only one multiplication per point, though it
doubles the number of precomputed coefficients required for Gaussian elimination.

Swarztrauber [21] has shown that block-cyclic reduction can be extended to
equations even more general than Eq. (24), though the resulting algorithm is very
complicated. Some extension is also possible for the FFT methods; see for example
Em

Finally in this section we relax the restriction that N be a power of 2. Sweet [25]
has extended Buneman’s algorithm to the case N = 2p3q5T *a.; the operation count
rises rather rapidly as larger factors of N are included. A more flexible, simpler, and
more efficient approach is to use FFT methods with a mixed-radix FFT (see Section 2).
For particularly awkward values of N, e.g., large prime numbers, the rectangle may
be embedded in a larger one with a more convenient value of NT using a capacity-
matrix technique together with “fast embedding” [28].

However, for general N the most efficient method may not after all be FFT-based.
A new block-cyclic reduction algorithm has recently been proposed [l&26] which
has an operation count approximately proportional to MN log, N for arbitrary M+ N.

Throughout this paper it has been tacitly assumed that the most important factor in
comparing algorithms is simply the operation count. Such is not necessarily the case
when the algorithms are implemented on some recent computers. On a parallel
machine, we need to consider the number of processors which can be simultaneously
active, while on a vector computer such as the CRAY-1 we need to maximize the
“vector length”. In either case the important factor is the degree of parallelism inherent
in the algorithm.

The basic FFT method for solving the discrete Poisson equation is a highly parallel
algorithm; at each stage we are either performing a set of independent Fourier
transforms, or solving a set of independent tridiagonal systems. For block-cyclic
reduction the situation is not so favorable; at each step of the reduction process the
number of independent systems to be solved is halved. It thus seems likely that on a
parallel or vector machine, the FFT method will be substantially faster than block-
cyclic reduction.

POISSON-SOLVERS: SOME COMPARISONS
17 n

As a preliminary example of what can be achieved, a Fortran program imple-
menting the basic FFT method solved the 128 x 12X Dir&let problem on a CRAY-1
in 16 msec, at a rate of 39 x lo6 floating point operations per second. Vectorization
was achieved in the FFT phases by treating all rows simultaneously, and in the
tridiagonal solution phase by treating all columns simultaneously.

9. CONCLUSIQNS

Some of the most important conclusions of this study may be summarized as
follows:

(I) In calculating operation counts for direct methods, it is important to include
both additions and multiplications, and to include terms of order MN as well as
those of order M-N log, N.

(2) Under the assumptions of Section 1, Buneman’s algorithm (block-cyciic
reduction) is faster than the basic FFT method for the Dirichlet problem, but the
introduction of periodic boundary conditions in one dire&on tends to reverse the

. . . pos1t10n.
(3) Buneman’s algorithm (especially Variant 2) can be implemented with fewer

operations than quoted, for example, by Hackney [13].
(4) FACR(1) algorithms, combining the FFT method with one preliminary level

of cyclic reduction, are faster than either of the basic methods except for the Dirichlet
problem on small grids, for which Buneman’s algorithm remains the fastest. .‘t
forthcoming report [30] will examine FACR(I) algorithms, in which the FFT method
is combined with ! preliminary levels of cyclic reduction to give a further increase
in speed.

(5) The cyclic reduction step for the FACR(1) algorit.hm can be incorporated
in at Ieast three different ways.

(0) Programming details are important; in particular, Fort-ran routines should
treat the arrays as one dimensional rather than two dimensional, even when a sophis-
ticated optimizing compiler is available.

<?) More complicated problems, and storage restrictions, tend to favor the FST
method since it requires fewer tridiagonal solutions than Euneman’s algorithm,

APPENDIX: ON ROUND-OFF ERRORS, RANDOM NUMBERS, 4~13 P~~SSO~J-§~LVERS

tn Section 7 we examined the accuracy of several algorithms with respect to round-
off error using the following simple experimental procedure: a “true” soluticn x in
the range [-I, + l] was constructed using a random-number generator; a corre-
sponding right-hand side b = Ax was then computed and input to the Poisson-solver.
The maximum absolute difference (averaged over a number of trials) between t&r?

18 CLIVE TEMPERTON

computed solution x’ and the true solution x was taken as a measure of the round-off
error of the Poisson-solver.

We demonstrate here the importance of using double precision to calculate b
from x, in order to confine round-off error to the Poisson-solver itself. Results are
presented here for the FACR(Z) routine PSOLVE described in [30] with I = log, N
(i.e., the solution was obtained by Buneman’s block-cyclic reduction algorithm), and
summarized in Table VII.

TABLE VII

Mean Maximum Error for the N x N Dirichlet Problem

Precision of computations
b A-lb

Single Single
Double Single
Single Double

N = 64 N = 128

4.57 x 10-S 1.64 x lo-$
1.37 x 10-S 2.58 x 1O-5
3.89 x 10-S 1.55 x 10-a

In the first series of experiments, all computations were performed in single
precision, corresponding to the first row of Table VII. In particular it was noted that
the errors grew like N2. Recognizing that the computation of b was itself a source of
round-off error, the experiments were repeated using double precision for this part
of the procedure. As shown in the second row of Table VII, this resulted in a dramatic
decrease in round-off error, especially for large grids; the errors now appeared to
grow linearly with N.

Some insight into this result is provided by the following argument. By introducing
round-off error into the computation of the right-hand side b, we actually solve a
slightly perturbed problem Ax’ = b + S. Even if we had a “perfect” Poisson-solver
which introduced no further round-off errors, the solution obtained would be
apparently in error by ,4-%. This situation can be realized by computing b in single
precision as before, but then using a double-precision version of the Poisson-solver.
The experiments were repeated using this version of the procedure, and yielded the
results in the third row of Table VII; the errors are almost as large as those in the
first row where a single-precision Poisson-solver was used.

Thus the errors in the first row of Table VII are dominated by the effect of round-off
errors incurred in the computation of b; those in the second row represent the round-
off error committed by the Poisson-solver itself; while those in the third row represent
the maximum change in the true solution caused by round-off errors in the compu-
tation of b, i.e., the maximum difference between the true solutions x = A-lb and
x’ = A-l@ + S). This is now seen to be considerably larger than the error committed
by the Poisson-solver itself.

When the above experiments were repeated on a CDC 6600, quite different results
were obtained; the errors were identical whether b was computed in single or double
precision, and were roughly proportional to N. (Hence the puzzling preliminary

POISSON-SOLVERS: SOME COMPARISON!;

result, quoted in 1171, that the errors appeared to grow linearly with Non a CDC 6600.
but like IV on an IEM 360/195.) The explanation lay in the random number generator
used to set up x on the CDC machine. The numbers generated were far from random
in one important respect ~- the last 16 bits of their binary representation were ah zeros:
so that the calculation of b (involving only a few additions) could indeed be performed
without round-off error. Although the random-number generator used in these
experiments was written by the author, the CDC-supplied routine RANF turns out
to have similar characteristics.

ACKNOWLEDGMENT

Some of this work was completed while the author was at the U.K. Meteorological Office, Bracknell.

REFERENCES

1. R. E. BANK ANII D. J. ROSE, Marching algorithms for elliptic boundary value problems. I: The
constant coefficient case, SIAM J. Numer. Anal. 14 (1977), 792-829.

2. G. D. BERGLAND, A Fast Fourier Transform algorithm for reai-valued series, Comm. A(CiT:I
11 (1968), 703-710.

3. B. L. BUZBEE, G. H. GOLUB, AND C. W. NIELSON, On direct methods for solving Poisson’s equa-
tions, §I&4 J. Namer. Anai. 7 (1970), 627-656.

4. B. L. BUZBEE, F. W. DORR, J. A. GEORGE, em G. H. GOLUE, The direct solution of the discrere
Poisson equation on irregular regions, SIAM J. Numer. Anal. 8 (1971), 722-736.

5. B. L. BUZBEE AND F. W. DORR, The direct solution of the biharmonic equation on rectanguiar
regions and the Poisson equation on irregular regions, SIAM J. Numer. Anal. 11(1974), 753-763

6. J. W. COOLEY, P. A. W. LEWIS, AND P. D. WELCH, The Fast Fourier Transform algorithm:
programming considerations in the calculation of sine, cosine and Laplace transforms, J. &~rn~
Vib. 12 (1970), 315-337.

7. F. W. DORR, The direct solution of the discrete Poisson equation in O(iV’) operations, .X4%
Reu. 17 (1975), 412-415.

8. D. J. Evans, An algorithm for the solution of certain tridiagonsl systems of linear equations.
Cornput. J. 15 (1972), 356-359.

9. D, J. EVANS AND M. HATZOPOULOS, The solution of certain bznded systems of linear equatrons
using the folding algorithm, C’omprct. J. 19 (1976), 184-187.

10. D. FISCHER, G. H. GOLUB, 0. HALD, C. LEIVA, AND 0. WLDLUNG, Qn Fourier-Toeplitz methods
for separable elliptic problems, Mat/z. Comp. 28 (1974), 348-368.

11. D. IHELLE~, Some aspects of the cyclic reduction algorithm for block tridiagonal linear systerr,a,,
SIAM J. Numer. Anal. 13 (1976), 484495.

12. R. W’. HOCK-Y, A fast direct solution of Poisson’s equation using Fourier analysis, J. A&jd
12 (1965), 95-113.

13. R. W. HOCKNEY, The potential calculation and so,me applications, ip; “Methods of Cornput&
tional Physics” (B. Alder, S. Fernbach and M. Rotenberg, Eds.), Vol. 9, pp~ 135-211, Academic
Press, New York, 1969.

14. R. W. HOCKMEY, Computers, compilers and Poisson-solvers, i:z “Computers, Fast Ehiptic
Salvers and Applications” (U. Schumann, Ed.), Advance Publications, London, 1978.

1% R. C. LEBAIL, Use of Fast Fourier Transforms for solving partial differential equations in physics,
J. Conrputatiot:al Pfgs. 9 (1972), 440-465.

20 CLIVE TEMPERTON

16. J. SCHR~DER AND U. TROTTENBERG, Reduktionsverfahren fir Differenzengleichungen bei Rand-
wertaufgaben: I, Nurner. Math. 22 (1973), 37-68.

17. U. ScHUM4NN, Report on the GAMM Workshop on fast solution methods for the discretized
Poisson equation, in “Computers, Fast Elliptic Solvers and Applications” (U. Schumann, Ed.),
Advance Publications, London, 1978.

18. U. SCHUMANN AND R. A. SWEET, A direct method for the solution of Poisson’s equation with
Neumann boundary conditions on a staggered grid of arbitrary size, J. Computational Phys.
20 (1976), 171-182.

19. R. C. SINGLETON, An algorithm for computing the mixed-radix Fast Fourier Transform, IEEE
Trans. Audio EIectroacoustics 17 (1969), 93-103.

20. P. N. SWARZTRAUBER, The direct solution of the discrete Poisson equation on the surface of a
sphere, J. Computational Phys. 15 (1974), 46-54.

21. P. N. SWARZTRAUBER, A direct method for the discrete solution of separable elliptic equations,
SIAM J. Numer. Anal. 11 (1974), 1136-1150.

22. P. N. SWARZTRAUBER, The methods of cyclic reduction, Fourier analysis and the FACR al-
gorithm for the discrete solution of Poisson’s equation on a rectangle, SIAM Rev. 19 (1977),
490-501.

23. P. N. SWARZTRQJJXR AND R. A. SWEET, The direct solution of the discrete Poisson equation on
a disk, SIAM J. Namer. Anal. 10 (1973), 900-907.

24. R. A. SWEET, Direct methods for the solution of Poisson’s equation on a staggered grid, J.
Computational Phys. 12 (1973), 422-428.

2.5. R. A. SWEET, A generalized cyclic reduction algorithm, SZAM J. Namer. Anal. 11(1974), 506-520.
26. R. A. SWEET, A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary

dimension, SZAM J. Numer. Anal. 14 (1977), 706-720.
27. C. TEICIPERTON, Algorithms for the solution of cyclic tridiagonal systems, J. Computational Phys.

19 (1975), 317-323.
28. C. TEMPERTON, A fast Poisson-solver for an octagonal domain, irt “Computers, Fast Elliptic

Solvers and Applications” (U. Schumann, Ed.), Advance Publications, London, 1978.
29. C. TEMPERTON, Mixed-radix Fast Fourier Transforms without reordering, ECMWF Technical

Report No. 3.
30. C. TEILIPERTON, On the FACR(I) algorithm for the discrete Poisson equation, J. Computational

Phys., to appear. (Preliminary version available as ECMWF Research Department Internal
Report No. 14).

31. R. S. VARGA, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, N.J., 1962.

